Chapter 12

Solving Graph Matching with EDAs Using a
Permutation-Based Representation

E. Bengoetxea
Department of Computer Architecture and Technology

University of the Basque Country

endika@si.ehu.es

P. Larranaga
Department of Computer Science and Artificial Intelligence

University of the Basque Country

ccplamup@si.ehu.es

I. Bloch A. Perchant

Department of Signal and Image Processing

Ecole Nationale Supérieure des Télécommunications
{bloch, perchant}@tsi.enst.fr

Abstract

Graph matching has become an important area of research because of
the potential advantages of using graphs for solving recognition prob-
lems. An example of its use is in image recognition problems, where
structures to be recognized are represented by nodes in a graph that are
matched against a model, which is also represented as a graph.

As the number of image recognition areas that make use of graphs is
increasing, new techniques are being introduced in the literature. Graph
matching can also be regarded as a combinatorial optimization problem
with constraints and can be solved with evolutionary computation tech-
niques such as Estimation of Distribution Algorithms.

This chapter introduces for the first time the use of Estimation of
Distribution Algorithms with individuals represented as permutations
to solve a particular graph matching problem. This is illustrated with
the real problem of recognizing human brain images.

P. Larranaga et al. (eds.), Estimation of Distribution Algorithms

© Springer Science+Business Media New York 2002



244  Estimation of Distribution Algorithms

Keywords: Inexact Graph Matching, Estimation of Distribution Algorithms, Hu-
man Brain Images

1. Introduction

Representation of structural information by graphs is widely used in do-
mains that include network modelling, psycho-sociology, image interpretation,
and pattern recognition. There, graph matching is used to identify nodes and
therefore structures. Most existing problems and methods in the graph match-
ing domain assume graph isomorphism, where both graphs being matched have
the same number of nodes and links. For some problems, this bijective condi-
tion between the two graphs is too strong and it is necessary to weaken it and
express the correspondence as an inexact graph matching problem.

Examples of inexact graph matching can be found in the pattern recogni-
tion field, where structural recognition of images is performed: the model (also
called the atlas or map depending on the application) is represented in the
form of a graph, where each node contains information for a particular struc-
ture, and data graph are generated from the images to be analyzed. Graph
matching techniques are then used to determine which structure in the model
corresponds to each of the structures in a given image. When the data graph
is generated automatically from the image to be analyzed, the difficulty of
accurately segmenting the image into meaningful entities means that overseg-
mentation techniques need to be applied (Perchant et al., 1999; Perchant and
Bloch, 1999; Perchant, 2000). These ensure that the boundaries between the
meaningful entities to be recognized will appear in the data image as clearly
distinct structures. As a result, the number of nodes in the data graph increases
and isomorphism condition between the model and data graphs cannot be as-
sumed. Such problems call for inexact graph matching, and similar examples
can be found in other fields. There, the graph matching technique of choice has
to perform the recognition process by returning a solution where each node in
the data graph is matched with the corresponding node in the model graph.

In addition, another important aspect to be taken into account is the fact
that some graph matching problems contain additional constraints on the match-
ing that have to be satisfied in order to consider the matching as correct.

The complexity of the graph matching problem is mostly determined by the
size of the model and data graphs. This has been proved to be NP-hard (Lovasz
and Plummer, 1986), and therefore the use of heuristic methods is justified.

Different techniques have been applied to inexact graph matching, including
combinatorial optimization (Cross and Hancock, 1999; Cross et al., 1997; Singh
and Chaudhury, 1997), relaxation (Finch et al., 1997; Gold and Rangara-
jan, 1996; Hancock and Kittler, 1990; Wilson and Hancock, 1996; Wilson and
Hancock, 1997), the EM algorithm (Cross and Hancock, 1998; Finch et al.,



Solving Graph Matching with EDAs Using a Permutation-Based Representation 245

1998), and Evolutionary Computation techniques such as Genetic Algorithms
(GAs) (Boeres et al., 1999; Myers and Hancock, 2001).

This chapter proposes optimization through learning and simulation of prob-
abilistic graphical models (such as Bayesian networks and Gaussian networks)
as the method of choice. Adaptations of different Estimation of Distribution Al-
gorithms (EDAs) for use in inexact graph matching are also introduced. EDAs
are also modified to deal with additional constraints in a graph matching prob-
lem. Existing articles on using EDAs to solve the graph matching problem
are Bengoetxea et al. (2000a) and Bengoetxea et al. (2000b), which compare
EDAs with GAs in their use for this type of problem.

The outline of this chapter is as follows: Section 2 explains the graph match-
ing problem, showing it as a combinatorial optimization problem with con-
straints. Section 3 proposes a permutation-based approach for solving the
inexact graph matching problem using EDAs. Sections 4 and 5 introduce a
method for translating from individuals containing a permutation to valid so-
lutions of the inexact graph matching problem for both discrete and continuous
domains. Section 6 describes the experiment carried out and the results ob-
tained. Finally, Section 7 gives conclusions and suggests further work.

2. Graph matching as a combinatorial
optimization problem with constraints

In any combinatorial optimization problem an important influence on algo-
rithm performance is the way that the problem is defined, in both the repre-
sentation of individuals chosen, and the fitness function used to evaluate those
individuals. This section gives some examples of representations (the encoding
of points in the search space).

2.1 Representation of individuals

One of the most important tasks in defining any problem to be solved with
heuristics is choosing an adequate representation of individuals, because this
determines to a large extent the performance of the algorithms. An individual
represents a solution, i.e. a point in the search space that has to be evaluated.
For a graph matching problem, each individual represents a match between the
nodes of a data graph G, and those of model graph G;.

A representation of individuals for this problem that was used in GAs in
Boeres et al. (1999) that could also be applied to EDAs is the following:
individuals with |Vi| - |V3| binary (only contains Os and 1s) genes or variables,
where V; and V; are the number of nodes in graphs G; and G; respectively. In
each individual, the meaning of entry ¢;j, 1 <¢ < |Vi] and 1 < j < |V4], is the
following: ¢;; = 1 means that the jt* node of G4 is matched with the it* node
of G;. The main drawback of this type of representation is the large number of



246 Estimation of Distribution Algorithms

variables or genes that the individual contains, which increases the complexity
of the problem that EDAs or GAs have to solve. The cardinality of the search
space is also

alVil-val (12.1)

which is quite large, although not all the individuals are valid (there are some
restrictions to consider within the individuals).

Another possible representation that can be used either in GAs or EDAs
consists of individuals which each contains |V;| genes or variables, where each
variable can contain any value between 1 and |V;|. More formally, the individual
as well as the solution it represents could be defined as follows: for 1 < k < |V;|
and 1 <4 < |Va|, X; = k means that the it" node of G is matched with the
k** node of G;. This is the representation used for instance in Bengoetxea et
al. (2000a) and Bengoetxea et al. (2000b). In this representation, the number
of possible solutions to the inexact graph matching problem is given by the

following formula for number of cases of permutation with repetition:
Va|=IV1]-1  |Va|=|W1|-1

!
. !“//121[ (12.2)
i1=1 i|V1|=1 H
where the values i, (k = 1,...,|V}|) satisfy the condition Zkvll iy = |Va|. We

will refer to this representation later in Section 6 as traditional.

An example of the traditional representation of individuals is shown in Fig-
ure 12.1 for a particular example where the model graph G; contains 6 nodes
(labeled from 1 to 6) and the data graph G, represents a segmented image and
contains 11 nodes (labeled from 1 to 11). This individual represents a solution
(a point in the search space) where the first two nodes of G5 are matched to
node number 1 of GG;, the next four nodes of G2 are matched to node number
2 of G4, and so on.

[1|tf2]2f2][2]|3]|4]4]5]6]

Figure 12.1 Traditional representation of an individual for the problem of graph
matching, when G; (the model graph) contains 6 nodes and G2 (the data graph
representing the segmented image) contains 11 nodes.

Another important aspect that determines which individual representation
is the most appropriate is given by the fact that every problem has restrictions
that have to be satisfied by the solutions (i.e. the individuals) in order to be
considered as correct or useful. For instance, when applying graph matching
techniques for the recognition of human brain structures, it is important for any
acceptable solution that all the main brain structures such as the cerebellum
are identified (e.g. a solution where the cerebellum is not present in the brain



Solving Graph Matching with EDAs Using a Permutation-Based Representation 247

image could not be accepted!). Each particular problem has its own particu-
lar constraints, and the different representations of individuals chosen have to
take these into account. The reader can find a review of types of individual
representations as well as the resolution of the restrictions in the human brain
problem in Bengoetxea et al. (2000a). The same reference introduces different
methods and mechanisms for generating correct individuals that satisfy these
constraints. It is important to note that for each different individual represen-
tation the procedure to handle those constraints is different, and therefore this
aspect has to be taken into account in any representation in order to obtain
correct solutions and to minimize the complexity of the problem.

3. Representing a matching as a permutation

Individual representations based on permutations have been typically ap-
plied to problems such as the Traveling Salesman Problem or the Vehicle Rout-
ing Problem, where either a salesman or a vehicle has to pass through a number
of places at the minimum cost.

A permutation-based representation can also be used for problems such as
inexact graph matching. In this case the meaning of the individual is completely
different, as an individual does not show directly which node of G5 is matched
with each node of G1. In fact, what we obtain from each individual is the order
in which nodes will be analyzed and treated so as to compute the matching
that it is representing.

For the individuals to contain a permutation, the individuals will be the
same size as the traditional ones described in Section 2.1 (i.e. |Va| variables
long). However, the number of values that each variable can obtain will be of
size | V2|, and not |V1]| as in that representation. In fact, it is important to note
that a permutation is a list of numbers in which all the values from 1 to n have
to appear in an individual of size n. In other words, our new representation
of individuals need to satisfy a strong constraint in order to be considered as
correct, that is, they all have to contain every value from 1 to n, where n = |V3|.

More formally, all the individuals used for our problem of inexact graph
matching will be formed from |V;| genes or variables, that contain no repeated
value within the individual and have values between 1 and [Va|. For 1 < k < |V5]
and 1 < i < |Va|, X; = k means that the k** node of G will be the i** node
that is analyzed for its most appropriate match.

3.1 From the permutation to the solution it represents

Once the type of individuals have been formally defined, we need to create a
method to obtain a solution from the permutation itself because the represen-
tation does not directly define the meaning of the solution. Every individual



248  Estimation of Distribution Algorithms

requires this step in order to be evaluated. As a result, it is important that
this translation is performed by a fast and simple algorithm.

This section introduces a way of performing this step. A solution for the
inexact graph matching problem can be calculated by comparing the nodes
to each other and deciding which is more similar to which using a similarity
function w(i,j) defined for this purpose to compute the similarity between
nodes ¢ and j. The similarity measures used so far in the literature have been
applied to two nodes, one from each graph, and their goal has been to help in
the computation of the fitness of a solution, that is, the final value of a fitness
function. However, the similarity measure w(z,j) proposed in this section is
quite different, as these two nodes to be evaluated are both in the data graph
(i,j € V5). With these new similarity values we will be able to look for the
node in G5 which is most similar to any particular node that is also in G3. The
aim of this is to identify for each particular node of Gy which other nodes in
the data graph are most similar to it, and try to group it with the best set of
already matched nodes.

We have not defined the exact basis for the similarity measure w yet. Differ-
ent aspects could be taken into account, and this topic will be further discussed
in Section 3.3.

As explained in the introduction, each particular problem usually contains
specific constraints that have to be satisfied by all the proposed solutions. If this
is the case, another important aspect is to ensure that the solution represented
by a permutation is always a correct individual. A solution will be considered as
correct only when it satisfies the conditions defined for the problem. In order to
set restrictions on our problem and test how the optimization methods handle
them, we will assume in this chapter that the only condition to consider an
individual as correct is that all the nodes of G, have to be matched with a
node of G, and that every node of G; is matched with at least one node of
G5. These conditions will be satisfied by the translation procedure proposed
next for both discrete and continuous domains.

Given an individual = (z1,... s ZIVi|> TV |+1> - - - » T|Vq|), the procedure to
do the translation is performed in two phases as follows:

m  The first |V;| values (z1, ..., zy,) that directly represent nodes of V5 will
be respectively matched to nodes 1, 2..., |V4| (that is, the node z; € V;
is matched with the node 1 € Vj, the node z9 € V5 is matched with the
node 2 € V4, and so on, until the node x|y,| € V2 is matched with the
node V| € V4).

m  For each of the following values of the individual, (z|v;|41,-- -, Z|v,)), and
following their order of appearance in the individual, the most similar
node will be chosen from all the previous values in the individual by
means of the similarity measure w. For each of these nodes of Gs, we



Solving Graph Matching with EDAs Using a Permutation-Based Representation 249

From discrete permutations to the solution

Definitions

|V1|: number of nodes in the model graph Gy

|V2|: number of nodes in the data graph G
[Va| > [VAl.

n = |Va|: size of the individual (the permutation)

= (Z1,...,T|1): individual containing a permutation

z; € {1,...,n}: value of the i** variable in the individual

PV; = {=x1,...,zi—1}: set of values assigned in the individual to
the variables X,...,X;—; (PV = previous values)

w(i,7): similarity function that measures the similarity of node 7 with
respect to node j

Procedure
Phase 1
Fori=1,2,...,|Vi|
(first |V3| values in the individual, treated in order)
Match node z; € V5 of data graph G2
with node ¢ € V; in model graph G,

Phase 2
Fori=|Vi|+1,...,|Vs|
(remaining values in the individual, treated in this order)
Let k € PV; be the most similar node to z; from
all the nodes of PV; (k = maxj=1...;—1 w(3,J))
Match node z; € V; of data graph G,
with the matched node that is matched to node k of G4

Figure 12.2 Pseudocode to compute the solution represented by a permutation-based
individual.

assign the matched node of G; that is matched to the most similar node
of Gg.

The first phase is very important in the generation of the individual, as this
is also the one that ensures the correctness of the solution represented by the
permutation: as all the values of V; are assigned from the beginning, and as
we assumed |Vz| > |V4]|, we conclude that all the nodes of G; will be matched
to any of the nodes of GG» in every solution represented by any permutation.



250  Estimation of Distribution Algorithms

Therefore, this permutation-based representation is suitable to be used for our
problem. The procedure described in this section is shown as pseudocode in
Figure 12.2.

3.2 Example

To demonstrate the representation of individuals containing permutations
and the procedure for translating them to a point in the search space, we con-
sider the example shown in Figure 12.3. In this example we are considering an
inexact graph matching problem with a data graph G2 of 10 nodes (|V2] = 10)
and a model graph G; of 6 nodes (|V;| = 6). We also use a similarity measure
for the example (the w(Z, ) function), the results of which are shown in the
same figure. This similarity function does not always have to be symmetrical,
and in this example we are using a non-symmetrical one (see Section 3.3 for
a discussion on this topic). The translation has to produce individuals of the
same size (10 nodes), but each of their values may contain a value between
1 and 6, that is, the number of the node of V}, with which the node of G5 is
matched in the solution.

Figure 12.2 shows the procedure for both phases 1 and 2. Following the
procedure for phase 1, the first 6 nodes will be matched, and we will obtain the
first matches for the three individuals in Figure 12.3.

In the second phase, generation of the solution will be completed by process-
ing one by one all the remaining variables of the individual. For that, we will
chose the next variable that is still not treated, the 7** in our example. Here,
the first individual in the example has the value 7 in its 7** position, which
means that node 7 of G5 will be worked on next. Similarly, the nodes of G5 to
be assigned to the 7¢* position for the other two example individuals are nodes
10 and 4 respectively.

Next, in order to calculate the node of G; that we have to assign to our
node of G5 in the matching, we compare the nodes of V5> that appear before
the 7t variable in the individual with it. Therefore for the first individual, we
compare the similarity between G5 node 7 and each of the G5 nodes 1 to 6.
This similarity measure is given by the function w shown in Figure 12.3. If we
look at the 7¢* line in this table we see that in columns 1 to 6, the highest value
is 0.96, in column 2. Therefore, following the algorithm in phase 2, we assign
to node 7 the same matched value as for node 2. As we can see in Figure 12.4,
for the first individual, node 2 was assigned the value 2, therefore we will also
assign the value 2 to the 7¢* node of G,.

Similarly, for the second individual, the 7t* variable of the individual is also
processed. This has the value 10, so node 10 of G, is therefore the next to be
matched. We will compare this node with the values of the previously matched
nodes, i.e. nodes 5, 8, 7, 1, 6 and 9. The highest similarity value for these
is w = 0.97, in column 9. Therefore the most similar node is node 9, and



Solving Graph Matching with EDAs Using a Permutation-Based Representation 251

Individuals:

[1]2]3[4]|5][6]7[8]o]10]

[s|8|7[1]6]9f10[3]4]2]

[0 of8]7[6]5]4][3]2]1]

Similarity Function:
wig | 1] 2| 3] 4] 5|6 | 7] 8|9 |10
1 | 1.00] 087|067 | 080|077 | 048 | 0.88 | 0.80 | 0.75 | 0.89 |
| 0.03 | 1.00 | 0.96 | 0.13 | 0.73 | 0.90 | 0.15 | 0.66 | 0.74 | 0.92 |
| 0.20 | 0.42 | 1.00 | 0.63 | 0.05 | 0.22 | 0.20 | 0.51 | 0.31 | 0.50 |
| 0.52 ] 0.50 | 0.88 | 1.00 | 0.49 | 0.88 | 0.08 | 0.91 | 0.38 | 0.47 |

| 0.19 [ 0.90 | 0.85 | 0.71 | 1.00 | 0.15 | 0.24 | 0.51 | 0.97 | 0.80 |

| 0.03 | 0.96 | 0.35 | 0.13 | 0.73 | 0.90 | 1.00 | 0.66 | 0.74 | 0.92 |
| 0.20 | 0.42 | 0.93 | 0.63 | 0.05 | 0.22 | 0.20 | 1.00 | 0.31 | 0.50 |
| 0.52 | 0.50 | 0.89 | 0.53 | 0.49 | 0.88 | 0.08 | 0.91 | 1.00 | 0.47 |

2
3
4
5
6 | 047|087 067|080 |0.77|100] 0.8 | 080|075 087 |
7
8
9

10 019|090 085 |0.71 | 0.18 | 0.15 | 0.24 | 0.51 | 0.97 | 1.00 |

Figure 12.8 Example of three permutation-based individuals and a similarity mea-
sure w(i, j) between nodes of the data graph (Vi,j € V2) for a data graph of 10 nodes
|V2| = 10.

node 10 of G2 will be matched to the same node of G; as node 9 of G, was.
Looking at Figure 12.4, this is 6" node of G;. Following the same process for
the third individual, we obtain that node 4 of G5 is matched with node 3 of
G,. Figure 12.5 shows the result of this first step of phase 2.

Continuing this procedure of phase 2 until the last variable, we obtain the
solutions shown in Figure 12.6.

Note that each of the nodes of G, is assigned to a variable between 1 and
V1| = 6. Note also that every node of G is matched to at least one node of
G», and that a value is given to every node of G, giving a matching value to
each of the segments in the data image (all the segments in the data image are
therefore recognised with a structure of the model).



252  Estimation of Distribution Algorithms

[t]2fsf4s]6]-|-[-]|-]

1 2 3 4 5 6 7 8 9 10

[4l-1-1-Jtfs[3]2]6]-]

1 2 3 4 5 6 7 8 9 10

|- l-1-1-l6fs]4]3][2]1]

1 2 3 4 5 6 7 8 9 10

Figure 12./ Result of the generation of the individual after the completion of phase
1 for the example in Figure 12.3 where six nodes of G2 have been matched (|V1| = 6).

[1]2fs]4fs]6]2|-[-]-|

1 2 3 4 5 6 7 8 9 10

[4]-1-1-l1|5]3]2]6]6]

1 2 3 4 5 6 7 8 9 10

|- 1-[-13]6]5[4]3]2]1}]

1 2 3 4 5 6 7 8 9 10

Figure 12.5 Generation of the solutions for the example individuals in Figure 12.3
after the first step of phase 2 (|Vi1| = 6).

An important aspect of this individual representation based on permutations
is that the cardinality of the search space is n!. This cardinality is higher than
that of the traditional individual representation. It is tested for its use with
EDAs in graph matching for the first time here. In addition, it is important
to note that a permutation-based approach can create redundancies in the
solutions, as two different permutations may correspond to the same solution.
An example of this is shown in Figure 12.7, where two individuals with different
permutations are shown and the solution they represent is exactly the same.



Solving Graph Matching with EDAs Using a Permutation-Based Representation

[1]2f3f4]5]6]2[3[3]3]

1 2 3 4 5 6 7 8 9 10

[4]2]2]2[1]5]|3]2]6]6]|

1 2 3 4 5 6 7 8 9 10

[1]3]8]3[6]5]4]8][2]1]

1 2 3 4 5 6 7 8 9 10

253

Figure 12.6 Result of the generation of the solutions after the completion of phase

2.
Individual 1:

[1]2]3]4f5]6[7|8]9]10]

Individual 2:

|1]2[3]4]5]6][7[9]8]10]

Solution they represent:

[ 1]2]3]4]5]6]2]3]|3]3]

1 2 3 4 5 6 7 8 9 10

Figure 12.7 Example of redundancy in the permutation-based approach. The two

individuals represent the same solution shown at the bottom of the figure.

3.3 Defining the similarity concept

There are three important aspects to consider in order to define the similarity

function w for phase 2:

m The first is to decide which nodes have to be compared. In the example
we propose comparing nodes from the same graph G5, that is, the model
graph G; has not been taken into account. Other approaches could be
considered for instance, taking into account the similarity of both nodes
of G; and nodes of G and assigning a weight to both values, or having a



254  Estimation of Distribution Algorithms

fitness function capable of returning a value for individuals that are not
complete.

®  Another additional procedure depending on the graph matching problem
to be solved is the recalculation of the similarity measure as the individual
is being generated: the similarity value could be changed as nodes of the
individual are being matched, by following a clustering procedure. This
means that in phase 2 an extra clustering procedure would be required
in order to update the function w.

m  And finally, the other aspect to take into account is the definition of the
similarity itself. This factor depends on the problem. This definition will
determine to an important degree the behavior of the algorithm.

4. Obtaining a permutation with discrete EDAs

After describing how permutations can be used in graph matching to obtain
correct solutions, the next step is to apply EDAs to this new type of individuals
in order to look for the permutation that symbolizes the solution with the opti-
mum fitness value. At the first glance the problem seems a simple application
of any EDAs, applying the method described in Section 3.1.

4.1 On EDAs applied to graph matching

We will define now more formally the graph matching problem and the way
of facing it with an EDA approach, based on the general notation introduced
in Chapter 3.

We call G; = (V1, E1) the model graph and Gs = (V3, E3) the data graph.
V; is the set of nodes and E; is the set of arcs of graph G; (i = 1,2). We still
assume that G2 contains more segments than G;. The graph matching task is
accomplished by matching nodes from G, with the nodes of the model graph
Gl .

We use a permutation as the representation of individuals, which means that
the size of these individuals will be of n = |V3| variables (that is, each individual

can be written = (21,...,Z}y,))), and each of the z; can have |V3| possible
values.
4.2 Looking for correct individuals

The simulation of Bayesian networks has been used to reason with networks
as an alternative to exact propagation methods. In EDAs simulation is used to
create the individuals of the following generation based on the structure learned
previously.



Solving Graph Matching with EDAs Using a Permutation-Based Representation 255

Among the various methods to perform the simulation process, for this chap-
ter the method of choice is the Probabilistic Logic Sampling (PLS) proposed in
Henrion (1988).

Nevertheless as explained in Section 2.1, whatever the representation of in-
dividuals selected, it is important to check that each individual is correct and
satisfies all the restrictions to the problem so that it can be considered as a
point in the search space. The interested reader can find a more exhaustive
review of this topic in Bengoetxea et al. (2000a), where the authors propose
different methods to obtain only correct individuals that satisfy the particular
constraints of the problem. In the latter reference two methods to control the
simulation step in EDAs are introduced: Last Time Manipulation (LTM) and
All Time Manipulation (ATM).

Both methods are based on the modification of the simulation step so that
during the simulation of each individual the probabilities learned from the
Bayesian network are modified. Each individual is generated variable by vari-
able following the ancestral ordering as in PLS, but the constraints are verified
during the instantiation and the probabilities obtained from the learning are
modified if necessary to ensure the correctness of the individual.

It is important to note that altering the probabilities at the simulation step,
whichever the way, implies that the result of the algorithm is also modified
somehow.

For our concrete case of a permutation-based representation, and in order
to lead EDAs to the generation of correct permutations only, any of these two
methods can be used, and both LTM and ATM will behave exactly in the
same way: the only difference between them is that LTM only interacts in
the simulation step when the number of values still not appeared equals the
number of variables to be simulated in the individual, and that ATM interacts
in the probabilities always. As in this case this situation will happen for all
the variables of all the individuals, both methods behave in the same way,
ensuring in both cases that every possible individual will contain always correct
permutations.

4.3 Choosing the best discrete EDA algorithm

In order to test EDAs in the inexact graph matching problem defined above,
three different EDAs were tested. Typical graph matching problems can have
large complexity, and as the difference in behavior between EDAs is to a large
extent due to the complexity of the probabilistic structure that they have to
build, these three algorithms have been chosen as representatives of the three
categories of EDAs introduced in Chapter 3: (1) UMDA (Miihlenbein, 1998)
as an example of an EDA that considers no interdependencies between the
variables; (2) MIMIC (De Bonet et al., 1997) is an example that belongs to



256  Estimation of Distribution Algorithms

the category of pairwise dependencies; (3) EBNA (Etxeberria and Larrafiaga,
1999) multiple interdependencies are allowed.

5. Obtaining a permutation with continuous
EDAs

Continuous EDAs provide the search with other types of EDAs that can
be more suitable for some problems. But again, the main goal is to find a
representation of individuals and a procedure to obtain an univocal solution to
the matching from each of the possible permutations.

In this case we propose a strategy based on the previous section, trying to
translate the individual in the continuous domain to a correct permutation in
the discrete domain, proceeding next as explained in Section 3.1.

This procedure of translating from the continuous world to the discrete world
has to be performed for each individual in order to be evaluated. Again, this
process has to be fast enough in order to reduce computation time.

With all these aspects in mind, individuals of size n = |V,| will be defined.
Each individual is obtained sampling from a n-dimensional Gaussian distribu-
tion, and therefore can take any value in IR™. With this new representation
the individuals do not have a direct meaning of the solution it represents: the
values for each of the variables do only show the way to translate from the
continuous world to a permutation as with the discrete representation shown
in Section 2.1, and it does not contain similarity values between nodes of any
graph. This new type of representation can also be regarded as a way of change
the search from the discrete to the continuous world, where the techniques that
can be applied to the estimation of densities are completely different.

To obtain a translation to a discrete permutation, we order the continuous
values of the individual, and set its corresponding discrete values by assigning
to each z; € {1,...,|Vs|} the respective order. The procedure described in this
section is shown as pseudocode in Figure 12.8.

For the simulation of an univariate normal distribution, a simple method
based on the sum of 12 uniform variables (Box and Muller, 1958) is chosen.
On the other hand, the sampling of multivariate normal distributions has been
done by means of an adaptation of the conditioning method (Ripley, 1987) on
the basis of the PLS algorithm. Note that in this continuous case it is not
required to check whether all the values are different or not.

Again, for the continuous domain different EDAs are proposed and these
are to be tested in this chapter for their performance in a concrete inexact
graph matching problem. Three different algorithms are chosen again, as rep-
resentatives of their complexity category. These are the UMDA ., MIMIC,, and
EGNA (Larraiiaga et al., 2000).



Solving Graph Matching with EDAs Using a Permutation-Based Representation 257

From a continuous value in IR" to a discrete permutation

Definitions
n = |Va|: size of the individual, which is the number of
nodes in data graph G, (the permutation)

zC= (zf,..., a:lc",zl): individual containing continuous
values (the input)
zP=(zP,... ,z'DVﬂ): individual containing a permutation
of discrete values (the output)
P € {1,...,n}: value of the i*" variable in the individual
Procedure
Order the values =¥, . .. ,xﬁ,2| of individual € using any

fast sorting algorithm such as Quicksort

Let K; be position in which each value m?, 1 < i < |V4|, occupies
after ordering all the values

The values of the individual P will be set in the following way:
Vi=1,...,|Vs], 2P = K;

Figure 12.8 Pseudocode to translate from a continuous value in IR™ to a discrete
permutation composed of discrete values.

6. Experimental results. The human brain
example
6.1 Overview of the human brain example

The example chosen to test the new permutation-based representation is
an inexact graph matching one used for recognition of structures in Magnetic
Resonance Images (MRI). The data graph Gs is generated from this image and
contains a node for each region (subset of a brain structure). The model graph
(7 is built from an anatomical atlas and each node corresponds exactly to one
brain structure. The experiments carried out in this chapter are focused on
this type of graphs, but could similarly be adapted to any other inexact graph
matching problem.

More specifically, the model graph has been obtained from the main struc-
tures of the brainstem, the inner part of the brain, and it does not take into
account the cerebral hemispheres. This reduced example is a shorter version
of the brain images recognition problem in Perchant and Bloch (1999). The



258  Estimation of Distribution Algorithms

fact that less structures have to be recognized (from 43 to 12) reduces the com-
plexity of the problem. In the same way, the human brain images have also
been reduced, and the number of structures of the data image to be matched
(number of nodes of G3) is also reduced from 245 to 94. The number of arcs is
also different in this problem: while in Perchant and Bloch (1999) G; and G,
contained 417 and 1451 arcs, in these examples the number of arcs is of 84 and
2868 respectively.

Speaking about the similarity concept, for our experiments we have used
only a similarity measure based on the grey level distribution, so that when the
function w returns a higher value for two nodes it shows a more similar grey
level distribution over the two segments of the data image. Another possible
property could have been the distance between the segments in the data image
for instance. In addition, no extra computation is performed during the gener-
ation of the individual (not clustering process is performed), and therefore the
similarity measure w is kept as a constant during the generation of individuals.
These decisions have been taken knowing the nature and properties of the data
graph, which is a human brain NMR image in black and white. These decisions
were also considered as a way to simplify the complexity of the problem.

6.2 Description of the experiment

The aim of these experiments is to test the performance of some discrete
and continuous EDAs introduced in Chapter 3 in this volume for the same
example. As the main difference between them is the number of dependencies
between variables that they take into account, the more complex algorithms
are expected to require more CPU time but also to reach a fitter final solution.
This section describes the experiments and the results obtained. EDAs are also
compared to a broadly known GA, the GENITOR (Whitley and Kauth, 1988),
which is a steady state type algorithm (ssGA) (Michalewicz, 1992).

Both EDAs and GENITOR were implemented in ANSI C++ language, and
the experiment was executed in a two processor Ultra 80 Sun computer under
Solaris version 7 with 1 Gb of RAM.

In the discrete case, all the algorithms were designed to end the search
when a maximum of 100 generations or when uniformity in the population was
reached. GENITOR is a special case, as it is a ssGA and therefore generates
only one individual at each iteration, but it was also programmed in order to
generate the same number of individuals as in discrete EDAs by allowing more
iterations (201900 individuals). In the continuous case, the ending criterion
was to reach 301850 evaluations (i.e. number of individuals generated).

The initial population for all the algorithms was generated using the same
random generation procedure based on a uniform distribution. The fitness
function used is described later in Section 6.3.



Solving Graph Matching with EDAs Using a Permutation-Based Representation 259

In EDAs, the following parameters were used: a population of 2000 individ-
uals (M = 2000), from which a subset of the best 1000 are selected (N = 1000)
to estimate the probability, and the elitist approach was chosen (that is, always
the best individual is included for the next population and 1999 individuals
are simulated). In GENITOR a population of 2000 individuals was also set,
with a mutation rate of p,, = I—V%T and a crossover probability of p. = 1. The
operators used in GENITOR where CX (Oliver et al., 1987) and EM (Banzhaf,
1990).

6.3 Definition of the fitness function

The definition of the fitness function for the graph matching problem will
be a very important factor in the resolution of the problem as well, as its
behavior will also determine how the optimization algorithm approaches the
best solution. It is important to define appropriately the function that will
be used in order to compare individuals and obtain the best solution. The
aim of this chapter is not to do a review of the different fitness functions for
graph matching. This is the reason why the function proposed in Perchant and
Bloch (1999) will be used just as an example of a fitness function in inexact
graph matching. This function has been used to solve the problem applied
to human brain images with GAs in Perchant et al. (1999) and Boeres et
al. (1999) and with EDAs in Bengoetxea et al. (2000a) and Bengoetxea et
al. (2000b). Following this function, an individual = (z1,...,Z|y,|) will be

evaluated as follows:
[Va| V1]

1 ul, j
(@5 po,pp, ) = a W;;(l—l%—ﬂa (U§)|) +
-a)| 3 Y (-teyers - ot ))| (23)
lE‘Z“Ell ¥ v} 23 2 .

Y Y
el =(ui,vi' )EE1 ek=(u},v] )EE

- 1 if I; =j
Y71 0 otherwise

where

and a is a parameter used to adapt the weight of node and arc correspondences
in f, and p, = {p¥* : Vo = [0,1],u; € V1} is the set of functions that measure
the correspondence between the nodes of both graphs G; and G,. Similarly,
Pu = {pff”’v‘) : By — [0,1], (u1,v1) € Ey} is the set of functions that measure
the correspondence between the arcs of both graphs G; and G2. The value of f
associated for each variable returns the goodness of the matching. Typically p,
and p, are related to the similarities between node properties and arc properties
respectively.
Function f(z; ps, pu, ) has to be maximized.



260  Estimation of Distribution Algorithms

Table 12.1 Mean values of experimental results after 10 executions for each algorithm
of the inexact graph matching problem of the Human Brain example.

Best fitness value Ezecution time Number of evaluations
UMDA 0.718623 00:53:29 85958
UMDA, 0.745036 03:01:05 301850
MIMIC 0.702707 00:57:30 83179
MIMIC, 0.747970 03:01:07 301850
EBNA 0.716723 01:50:39 85958
EGNA 0.746893 04:13:39 301850
ssGA 0.693575 07:31:26 201900
p < 0.001 p < 0.001 p < 0.001

6.4 Experimental results

Results such as the best individual obtained, the computation time, and the
number of evaluations to reach the final solution were recorded for each of the
experiments.

The computation time is the CPU time of the process for each execution,
and therefore it is not dependent on the multiprogramming level at the moment
of the execution. This computation time is presented as a measure to illustrate
the different computation complexity of all the algorithms. It is important
also to note that all the operations for the estimation of the distribution, the
simulation, and the evaluation of the new individuals are carried out through
memory operations.

Each algorithm was executed 10 times, and the null hypothesis of the same
distribution densities was tested for each of them. The non-parametric tests
of Kruskal-Wallis and Mann-Whitney were used. This task was carried out
with the statistical package S.P.S.S. release 9.00 and the results are shown in
Table 12.1.

This table shows the mean results for each of the experiments, showing the
different parameters (best fitness value obtained, execution time and number of
generations required respectively). Additionally, the same Kruskal-Wallis and
Mann-Whitney tests were also applied to test the differences between particular
algorithms. The results were as follows:

m Between algorithms of similar complexity only:

— UMDA vs. UMDA.. Fitness value: p < 0.001; CPU time: p < 0.001;
Evaluations: p < 0.001.



Solving Graph Matching with EDAs Using a Permutation-Based Representation 261

— MIMIC vs. MIMIC,. Fitness value: p < 0.001; CPU time: p < 0.001;
Evaluations: p < 0.001.

— EBNA vs. EGNA. Fitness value: p < 0.001; CPU time: p < 0.001;
Evaluations: p < 0.001.

From the results we can conclude that the differences between the al-
gorithms in the discrete and continuous domains are significant for all
the algorithms analyzed. This means that the behaviour of selecting a
discrete learning algorithm or its equivalent in the continuous domain is
very different regarding all the parameters analyzed. It is important to
note that the number of evaluations was expected to be different, as the
ending criteria for the discrete and continuous domains have been set to
be different. In all the cases, the continuous algorithms obtained a fitter
individual, but the CPU time and number of individuals created was also
bigger.

m Between discrete EDAs only:

— Fitness value: p < 0.001.
— CPU time: p < 0.001.
— Evaluations: p < 0.001.

In this case significant results are also obtained in fitness value and CPU
times, as well as in the number of evaluations. The discrete algorithm
that obtained the best result was UMDA, closely followed by EBNA. The
differences in the CPU time are also according to the complexity of the
learning algorithm we used. Finally, the different number of evaluations
means that MIMIC required significantly less individuals to converge (to
reach the uniformity in the population), whereas the other two EDAs
require quite the same number of evaluations to converge.

The genetic algorithm GENITOR is far behind the performance of EDAs.
The computation time is also a factor to be taken into account: the fact
that GENITOR requires about 7 hours for each execution can give an
idea of the complexity of the problem that these algorithms are dealing
with.

s Between continuous EDAs only:

— Fitness value: p = 0.342.
— CPU time: p < 0.001.
— Evaluations: p = 1.000.

In the case of the continuous algorithms, the differences in fitness value
between the different learning methods are not significant in the light of



262  Estimation of Distribution Algorithms

the results. Nevertheless, the CPU time required for each of them is also
according to the complexity of the learning algorithm. On the other hand,
as the ending criterion for all the continuous algorithms was to reach the
same number of evaluations, it was obvious that there were not differences
between them in the number of evaluations. Speaking about the differ-
ences in computation time between discrete and continuous EDAs, it is
important to note that the latter ones require all the 301850 individuals
to be generated before they finish the search. Furthermore, the compu-
tation time for the continuous algorithms is also longer than the discrete
equivalents as a result of several factors: firstly, due to the higher num-
ber of evaluations they perform each execution, secondly because of the
longer individual-to-solution translation procedure that has to be done
for each of the individuals generated, and lastly, as a result of the longer
time required to learn the model in continuous spaces.

In the light of the results obtained in the fitness values, we can conclude
the following: generally speaking, continuous algorithms perform better than
discrete ones, either when comparing all of them in general or when only with
algorithms of equivalent complexity.

7. Conclusions and further work

This chapter introduces a new individual representation approach for EDAs
applied to the inexact graph matching problem. This new individual represen-
tation can be applied in both discrete and continuous domains.

In experiments carried out with a real example, a comparison of the per-
formance of this new approach between the discrete and continuous domains
has been done, and continuous EDAs have shown a better performance look-
ing at the fittest individual obtained, however a longer execution time and
more evaluations were required. Additionally, other fitness functions should be
tested with this new approach. Techniques such as Bloch (1999a) and Bloch
(1999b) could also help to introduce better similarity measures and therefore
improve the results obtained considerably.

Acknowledgments

This chapter has been partially supported by the Spanish Ministry for Science and
Education, and the French Ministry for Education, Research and Technology with
the projects HF1999-0107, and Picasso-00773TE respectively. The authors would
also like to thank R. Etxeberria, I. Inza and J.A. Lozano for their useful advice and
contributions to this work.



Solving Graph Matching with EDAs Using a Permutation-Based Representation 263

References

Banzhaf, W. (1990). The molecular traveling salesman. Biological Cybernetics,
64:7-14.

Bengoetxea, E., Larrafiaga, P., Bloch, L., Perchant, A., and Boeres, C. (2000a).
Inexact graph matching using learning and simulation of Bayesian networks.
An empirical comparison between different approaches with synthetic data.
In Proceedings of CaNew workshop, ECAI 2000 Conference, ECCAI, Berlin.

Bengoetxea, E., Larranaga, P., Bloch, I., Perchant, A., and Boeres, C. (2000b).
Learning and simulation of Bayesian networks applied to inexact graph
matching. International Journal of Approzimate Reasoning. (submitted).

Bloch, I. (1999a). Fuzzy relative position between objects in image process-
ing: a morphological approach. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 21(7):657-664.

Bloch, I. (1999b). On fuzzy distances and their use in image processing under
imprecision. Pattern Recognition, 32:1873-1895.

Boeres, C., Perchant, A., Bloch, I., and Roux, M. (1999). A genetic algorithm
for brain image recognition using graph non-bijective correspondence. Un-
published manuscript.

Box, G.E.P. and Muller, M.E. (1958). A note on the generation of random
normal deviates. Ann. Math. Statist., 29:610-611.

Cross, A.D.J. and Hancock, E.R. (1998). Graph matching with a dual-step
EM algorithm. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 20(11):1236-53.

Cross, A.D.J. and Hancock, E.R. (1999). Convergence of a hill climbing genetic
algorithm for graph matching. In Hancock, E.R. and Pelillo, M., editors,
Lectures Notes in Computer Science 1654, pages 220-236, York, UK.

Cross, A.D.J., Wilson, R.C., and Hancock, E.R. (1997). Inexact graph matching
using genetic search. Pattern Recognition, 30(6):953-70.

De Bonet, J.S., Isbell, C.L., and Viola, P. (1997). MIMIC: Finding optima by
estimating probability densities. Advances in Neural Information Processing
Systems, Vol. 9.

Etxeberria, R. and Larranaga, P. (1999). Global optimization with Bayesian
networks. In IT Symposium on Artificial Intelligence. CIMAF99. Special Ses-
sion on Distributions and Evolutionary Optimization, pages 332-339.

Finch, A.W., Wilson, R.C., and Hancock, E.R. (1997). Matching Delaunay
graphs. Pattern Recognition, 30(1):123-40.

Finch, A.W., Wilson, R.C., and Hancock, E.R. (1998). Symbolic graph match-
ing with the EM algorithm. Pattern Recognition, 31(11):1777-90.

Gold, S. and Rangarajan, A. (1996). A graduated assignment algorithm for
graph matching. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 18(4):377-88.



264  Estimation of Distribution Algorithms

Hancock, E.R. and Kittler, J. (1990). Edge-labeling using dictionary-based re-
laxation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
12(2):165-181.

Henrion, M. (1988). Propagating uncertainty in Bayesian networks by proba-
bilistic logic sampling. In Lemmer, J.F. and Kanal, L.N., editors, Uncertainty
in Artificial Intelligence, volume 2, pages 149-163. North-Holland, Amster-
dam.

Larrafiaga, P., Etxeberria, R., Lozano, J.A., and Peiia, J.M. (2000). Optimiza-
tion in continuous domains by learning and simulation of Gaussian net-
works. In Proceedings of the Workshop in Optimization by Building and using
Probabilistic Models. A Workshop within the 2000 Genetic and Evolutionary
Computation Conference, GECCO 2000, pages 201-204, Las Vegas, Nevada,
USA.

Lovasz, L. and Plummer, M.D. (1986). Matching Theory. Mathematics Studies.
Elsevier Science, North-Holland.

Michalewicz, Z. (1992). Genetic algorithms + data structures = Evolution Pro-
grams. Springer Verlag, Berlin Heidelberg.

Miihlenbein, H. (1998). The equation for response to selection and its use for
prediction. Evolutionary Computation, 5:303-346.

Myers, R. and Hancock, E.R. (2001). Least committment graph matching with
genetic algorithms. Pattern Recognition, 34:375-394.

Oliver, J., Smith, D., and Holland, J. (1987). A study of permutation crossover
operators on the TSP. In Grefenstette, J.J., editor, Proceedings of the Sec-
ond International Conference on Genetic Algorithms and Their Applications,
pages 224-230. Lawrence Erlbaum Associates.

Perchant, A. (2000). Morphism of graphs with fuzzy attributes for the recogni-
tion of structural scenes. PhD Thesis, Ecole Nationale Supérieure des Téléco-
mmunications, Paris, France (In french).

Perchant, A. and Bloch, I. (1999). A New Definition for Fuzzy Attributed
Graph Homomorphism with Application to Structural Shape Recognition in
Brain Imaging. In IMTC’99, 16th IEEE Instrumentation and Measurement
Technology Conference, pages 1801-1806, Venice, Italy.

Perchant, A., Boeres, C., Bloch, I., Roux, M., and Ribeiro, C. (1999). Model-
based Scene Recognition Using Graph Fuzzy Homomorphism Solved by Ge-
netic Algorithms. In GbR’99 2nd International Workshop on Graph-Based
Representations in Pattern Recognition, pages 61-70, Castle of Haindorf,
Austria.

Ripley, B.D. (1987). Stochastic Simulation. John Wiley and Sons.

Singh, M. and Chaudhury, A.C.S. (1997). Matching structural shape descrip-
tions using genetic algorithms. Pattern Recognition, 30(9):1451-62.



Solving Graph Matching with EDAs Using a Permutation-Based Representation 265

Whitley, D. and Kauth, J. (1988). GENITOR: A different genetic algorithm.
In Proceedings of the Rocky Mountain Conference on Artificial Intelligence,
volume 2; pages 118-130.

Wilson, R.C. and Hancock, E.R. (1996). Bayesian compatibility model for graph
matching. Pattern Recognition Letters, 17:263-276.

Wilson, R.C. and Hancock, E.R. (1997). Structural matching by discrete re-
laxation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(6):634-648.



	12

