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Abstract Graph matching has become an important area of research because of 
the potential advantages of using graphs for solving recognition prob
lems. An example of its use is in image recognition problems, where 
structures to be recognized are represented by nodes in a graph that are 
matched against a model, which is also represented as a graph. 

As the number of image recognition areas that make use of graphs is 
increasing, new techniques are being introduced in the literature. Graph 
matching can also be regarded as a combinatorial optimization problem 
with constraints and can be solved with evolutionary computation tech
niques such as Estimation of Distribution Algorithms. 

This chapter introduces for the first time the use of Estimation of 
Distribution Algorithms with individuals represented as permutations 
to solve a particular graph matching problem. This is illustrated with 
the real problem of recognizing human brain images. 
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1. Introduction 
Representation of structural information by graphs is widely used in do

mains that include network modelling, psycho-sociology, image interpretation, 
and pattern recognition. There, graph matching is used to identify nodes and 
therefore structures. Most existing problems and methods in the graph match
ing domain assume graph isomorphism, where both graphs being matched have 
the same number of nodes and links. For some problems, this bijective condi
tion between the two graphs is too strong and it is necessary to weaken it and 
express the correspondence as an inexact graph matching problem. 

Examples of inexact graph matching can be found in the pattern recogni
tion field, where structural recognition of images is performed: the model (also 
called the atlas or map depending on the application) is represented in the 
form of a graph, where each node contains information for a particular struc
ture, and data graph are generated from the images to be analyzed. Graph 
matching techniques are then used to determine which structure in the model 
corresponds to each of the structures in a given image. When the data graph 
is generated automatically from the image to be analyzed, the difficulty of 
accurately segmenting the image into meaningful entities means that overseg
mentation techniques need to be applied (Perchant et al., 1999; Perchant and 
Bloch, 1999; Perchant, 2000). These ensure that the boundaries between the 
meaningful entities to be recognized will appear in the data image as clearly 
distinct structures. As a result, the number of nodes in the data graph increases 
and isomorphism condition between the model and data graphs cannot be as
sumed. Such problems call for inexact graph matching, and similar examples 
can be found in other fields. There, the graph matching technique of choice has 
to perform the recognition process by returning a solution where each node in 
the data graph is matched with the corresponding node in the model graph. 

In addition, another important aspect to be taken into account is the fact 
that some graph matching problems contain additional constraints on the match
ing that have to be satisfied in order to consider the matching as correct. 

The complexity of the graph matching problem is mostly determined by the 
size of the model and data graphs. This has been proved to be NP-hard (Lovasz 
and Plummer, 1986), and therefore the use of heuristic methods is justified. 

Different techniques have been applied to inexact graph matching, including 
combinatorial optimization (Cross and Hancock, 1999; Cross et al., 1997; Singh 
and Chaudhury, 1997), relaxation (Finch et al., 1997; Gold and Rangara
jan, 1996; Hancock and Kittler, 1990; Wilson and Hancock, 1996; Wilson and 
Hancock, 1997), the EM algorithm (Cross and Hancock, 1998; Finch et al., 
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1998), and Evolutionary Computation techniques such as Genetic Algorithms 
(GAs) (Boeres et al. , 1999; Myers and Hancock, 2001) . 

This chapter proposes optimization through learning and simulation of prob
abilistic graphical models (such as Bayesian networks and Gaussian networks) 
as the method of choice. Adaptations of different Estimation of Distribution Al
gorithms (EDAs) for use in inexact graph matching are also introduced. ED As 
are also modified to deal with additional constraints in a graph matching prob
lem. Existing articles on using EDAs to solve the graph matching problem 
are Bengoetxea et al. (2000a) and Bengoetxea et al. (2000b), which compare 
EDAs with GAs in their use for this type of problem. 

The outline of this chapter is as follows: Section 2 explains the graph match
ing problem, showing it as a combinatorial optimization problem with con
straints. Section 3 proposes a permutation-based approach for solving the 
inexact graph matching problem using EDAs. Sections 4 and 5 introduce a 
method for translating from individuals containing a permutation to valid so
lutions of the inexact graph matching problem for both discrete and continuous 
domains. Section 6 describes the experiment carried out and the results ob
tained. Finally, Section 7 gives conclusions and suggests further work. 

2. Graph matching as a combinatorial 
optimization problem with constraints 

In any combinatorial optimization problem an important influence on algo
rithm performance is the way that the problem is defined, in both the repre
sentation of individuals chosen, and the fitness function used to evaluate those 
individuals. This section gives some examples of representations (the encoding 
of points in the search space). 

2.1 Representation of individuals 

One of the most important tasks in defining any problem to be solved with 
heuristics is choosing an adequate representation of individuals, because this 
determines to a large extent the performance of the algorithms. An individual 
represents a solution, i.e. a point in the search space that has to be evaluated. 
For a graph matching problem, each individual represents a match between the 
nodes of a data graph Gz and those of model graph G I . 

A representation of individuals for this problem that was used in GAs in 
Boeres et al. (1999) that could also be applied to EDAs is the following: 
individuals with !VII'!Vzl binary (only contains Os and Is) genes or variables, 
where VI and V2 are the number of nodes in graphs G I and Gz respectively. In 
each individual, the meaning of entry Cij, 1 :S i :S !VII and 1 :S j :S !V21, is the 
following: Cij = 1 means that the jth node of G2 is matched with the ith node 
of G I . The main drawback of this type of representation is the large number of 
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variables or genes that the individual contains, which increases the complexity 
of the problem that ED As or GAs have to solve. The cardinality of the search 
space is also 

(12.1) 

which is quite large, although not all the individuals are valid (there are some 
restrictions to consider within the individuals). 

Another possible representation that can be used either in GAs or EDAs 
consists of individuals which each contains 1V2\ genes or variables, where each 
variable can contain any value between 1 and IVI\. More formally, the individual 
as well as the solution it represents could be defined as follows: for 1 ::; k ::; IVl\ 
and 1 ::; i ::; \V2 \, Xi = k means that the ith node of G2 is matched with the 
kth node of G l. This is the representation used for instance in Bengoetxea et 
al. (2000a) and Bengoetxea et al. (2000b). In this representation, the number 
of possible solutions to the inexact graph matching problem is given by the 
following formula for number of cases of permutation with repetition: 

1V21-1V11-l 1V21-lVtI-l 

L L 1V2\! 
nIV11 . I 

il=l iWll=l k=l Zk· 

(12.2) 

where the values i k (k = 1, ... , IVl\) satisfy the condition I:~~i i k = 1V2\' We 
will refer to this representation later in Section 6 as traditional. 

An example of the traditional representation of individuals is shown in Fig
ure 12.1 for a particular example where the model graph G1 contains 6 nodes 
(labeled from 1 to 6) and the data graph G2 represents a segmented image and 
contains 11 nodes (labeled from 1 to 11). This individual represents a solution 
(a point in the search space) where the first two nodes of G2 are matched to 
node number 1 of G l , the next four nodes of G2 are matched to node number 
2 of G l , and so on. 

I 1 I 1 I 2 I 2 I 2 I 2 I 3 I 4 I 4 I 5 1 6 1 

Figure 12.1 Traditional representation of an individual for the problem of graph 
matching, when G1 (the model graph) contains 6 nodes and G2 (the data graph 
representing the segmented image) contains 11 nodes. 

Another important aspect that determines which individual representation 
is the most appropriate is given by the fact that every problem has restrictions 
that have to be satisfied by the solutions (i.e. the individuals) in order to be 
considered as correct or useful. For instance, when applying graph matching 
techniques for the recognition of human brain structures, it is important for any 
acceptable solution that all the main brain structures such as the cerebellum 
are identified (e.g. a solution where the cerebellum is not present in the brain 
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image could not be accepted!). Each particular problem has its own particu
lar constraints, and the different representations of individuals chosen have to 
take these into account. The reader can find a review of types of individual 
representations as well as the resolution of the restrictions in the human brain 
problem in Bengoetxea et al. (2000a). The same reference introduces different 
methods and mechanisms for generating correct individuals that satisfy these 
constraints. It is important to note that for each different individual represen
tation the procedure to handle those constraints is different, and therefore this 
aspect has to be taken into account in any representation in order to obtain 
correct solutions and to minimize the complexity of the problem. 

3. Representing a matching as a permutation 
Individual representations based on permutations have been typically ap

plied to problems such as the Traveling Salesman Problem or the Vehicle Rout
ing Problem, where either a salesman or a vehicle has to pass through a number 
of places at the minimum cost. 

A permutation-based representation can also be used for problems such as 
inexact graph matching. In this case the meaning of the individual is completely 
different, as an individual does not show directly which node of G2 is matched 
with each node of G I . In fact, what we obtain from each individual is the order 
in which nodes will be analyzed and treated so as to compute the matching 
that it is representing. 

For the individuals to contain a permutation, the individuals will be the 
same size as the traditional ones described in Section 2.1 (i.e. 1V21 variables 
long). However, the number of values that each variable can obtain will be of 
size 1V21, and not IVII as in that representation. In fact, it is important to note 
that a permutation is a list of numbers in which all the values from 1 to n have 
to appear in an individual of size n. In other words, our new representation 
of individuals need to satisfy a strong constraint in order to be considered as 
correct, that is, they all have to contain every value from 1 to n, where n = 1V21. 

More formally, all the individuals used for our problem of inexact graph 
matching will be formed from 1V21 genes or variables, that contain no repeated 
value within the individual and have values between 1 and 1V21. For 1 ::; k ::; 1V21 
and 1 ::; i ::; 1V21, Xi = k means that the kth node of G2 will be the ith node 
that is analyzed for its most appropriate match. 

3.1 From the permutation to the solution it represents 

Once the type of individuals have been formally defined, we need to create a 
method to obtain a solution from the permutation itself because the represen
tation does not directly define the meaning of the solution. Every individual 
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requires this step in order to be evaluated. As a result, it is important that 
this translation is performed by a fast and simple algorithm. 

This section introduces a way of performing this step. A solution for the 
inexact graph matching problem can be calculated by comparing the nodes 
to each other and deciding which is more similar to which using a similarity 
function ro(i,j) defined for this purpose to compute the similarity between 
nodes i and j. The similarity measures used so far in the literature have been 
applied to two nodes, one from each graph, and their goal has been to help in 
the computation of the fitness of a solution, that is, the final value of a fitness 
function. However, the similarity measure ro(i, j) proposed in this section is 
quite different, as these two nodes to be evaluated are both in the data graph 
(i,j E V2 ). With these new similarity values we will be able to look for the 
node in G2 which is most similar to any particular node that is also in G2 . The 
aim of this is to identify for each particular node of G2 which other nodes in 
the data graph are most similar to it, and try to group it with the best set of 
already matched nodes. 

We have not defined the exact basis for the similarity measure ro yet. Differ
ent aspects could be taken into account, and this topic will be further discussed 
in Section 3.3. 

As explained in the introduction, each particular problem usually contains 
specific constraints that have to be satisfied by all the proposed solutions. If this 
is the case, another important aspect is to ensure that the solution represented 
by a permutation is always a correct individual. A solution will be considered as 
correct only when it satisfies the conditions defined for the problem. In order to 
set restrictions on our problem and test how the optimization methods handle 
them, we will assume in this chapter that the only condition to consider an 
individual as correct is that all the nodes of G2 have to be matched with a 
node of G I , and that every node of G I is matched with at least one node of 
G2 . These conditions will be satisfied by the translation procedure proposed 
next for both discrete and continuous domains. 

Given an individual X= (xI, ... ,xlVl!,XIVI!H, ... ,xIV2!)' the procedure to 
do the translation is performed in two phases as follows: 

• The first !VI! values (Xl, ... , xlVd) that directly represent nodes of V2 will 
be respectively matched to nodes 1, 2 ... , !VI! (that is, the node Xl E V2 

is matched with the node 1 E VI, the node X2 E V2 is matched with the 
node 2 E VI, and so on, until the node XlVI! E V2 is matched with the 
node !VI ! E VI) . 

• For each of the following values of the individual, (XIVI!+I,· .. ,XIV2!)' and 
following their order of appearance in the individual, the most similar 
node will be chosen from all the previous values in the individual by 
means of the similarity measure tv. For each of these nodes of G2 , we 
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From discrete permutations to the solution 

Definitions 
IVII: number of nodes in the model graph G I 
1V21: number of nodes in the data graph G2 

1V21 > IVII· 
n = 1V21: size of the individual (the permutation) 
X= (Xl, ... ,X!V2!): individual containing a permutation 
Xi E {I, ... , n}: value of the ith variable in the individual 
PVi = {Xl, ... , Xi-I}: set of values assigned in the individual to 

the variables X I, ... ,Xi - I (PV = previous values) 
w(i,j): similarity function that measures the similarity of node i with 

respect to node j 

Procedure 
Phase 1 

For i = 1,2, ... , IVII 
(first IVII values in the individual, treated in order) 

Match node Xi E V2 of data graph G2 

with node i E VI in model graph G I 

Phase 2 
For i = IVII + 1, ... , 1V21 
(remaining values in the individual, treated in this order) 

Let k E PVi be the most similar node to Xi from 
all the nodes of PVi (k = maxj=l...i-I w(i,j)) 

Match node Xi E V2 of data graph G2 

with the matched node that is matched to node k of G 2 

Figu1'e 12.2 Pseudocode to compute the solution represented by a permutation-based 
individual. 

assign the matched node of G I that is matched to the most similar node 
of G2 . 

The first phase is very important in the generation of the individual, as this 
is also the one that ensures the correctness of the solution represented by the 
permutation: as all the values of VI are assigned from the beginning, and as 
we assumed 1V21 > lVII, we conclude that all the nodes of G I will be matched 
to any of the nodes of G 2 in every solution represented by any permutation. 
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Therefore, this permutation-based representation is suitable to be used for our 
problem. The procedure described in this section is shown as pseudocode in 
Figure 12.2. 

3.2 Example 

To demonstrate the representation of individuals containing permutations 
and the procedure for translating them to a point in the search space, we con
sider the example shown in Figure 12.3. In this example we are considering an 
inexact graph matching problem with a data graph G2 of 10 nodes (1V21 = 10) 
and a model graph GI of 6 nodes (IVII = 6). We also use a similarity measure 
for the example (the tv(i,j) function), the results of which are shown in the 
same figure. This similarity function does not always have to be symmetrical, 
and in this example we are using a non-symmetrical one (see Section 3.3 for 
a discussion on this topic). The translation has to produce individuals of the 
same size (10 nodes), but each of their values may contain a value between 
1 and 6, that is, the number of the node of VI with which the node of G2 is 
matched in the solution. 

Figure 12.2 shows the procedure for both phases 1 and 2. Following the 
procedure for phase 1, the first 6 nodes will be matched, and we will obtain the 
first matches for the three individuals in Figure 12.3. 

In the second phase, generation of the solution will be completed by process
ing one by one all the remaining variables of the individual. For that, we will 
chose the next variable that is still not treated, the 7th in our example. Here, 
the first individual in the example has the value 7 in its 7th position, which 
means that node 7 of G2 will be worked on next. Similarly, the nodes of G2 to 
be assigned to the 7th position for the other two example individuals are nodes 
10 and 4 respectively. 

Next, in order to calculate the node of G I that we have to assign to our 
node of G2 in the matching, we compare the nodes of V2 that appear before 
the 7th variable in the individual with it. Therefore for the first individual, we 
compare the similarity between G2 node 7 and each of the G2 nodes 1 to 6. 
This similarity measure is given by the function tv shown in Figure 12.3. If we 
look at the 7th line in this table we see that in columns 1 to 6, the highest value 
is 0.96, in column 2. Therefore, following the algorithm in phase 2, we assign 
to node 7 the same matched value as for node 2. As we can see in Figure 12.4, 
for the first individual, node 2 was assigned the value 2, therefore we will also 
assign the value 2 to the 7th node of G2 . 

Similarly, for the second individual, the 7th variable of the individual is also 
processed. This has the value 10, so node 10 of G2 is therefore the next to be 
matched. We will compare this node with the values of the previously matched 
nodes, i.e. nodes 5, 8, 7, 1, 6 and 9. The highest similarity value for these 
is tv = 0.97, in column 9. Therefore the most similar node is node 9, and 
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Individuals: 

11121314151611718191101 

15181711161911101314121 

11019181716151141312111 

Similarity Function: 

w(i,j) 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 

1 1 1.00 1 0.87 1 0.67 1 0.80 1 0.77 1 0.48 1 0.88 1 0.80 1 0.75 1 0.89 1 

2 1 0.03 1 1.00 1 0.96 1 0.13 1 0.73 1 0.90 1 0.15 1 0.66 1 0.74 1 0.92 1 

3 1 0.20 1 0.42 1 1.00 1 0.63 1 0.05 1 0.22 1 0.20 1 0.51 1 0.31 1 0.50 1 

4 1 0.52 1 0.50 1 0.88 1 1.00 1 0.49 1 0.88 1 0.08 1 0.91 1 0.38 1 0.47 1 

5 1 0.19 1 0.90 1 0.85 1 0.71 11.00 1 0.15 1 0.24 1 0.51 1 0.97 1 0.80 1 

6 1 0.47 1 0.87 1 0.67 1 0.80 1 0.77 1 1.00 1 0.88 1 0.80 1 0.75 1 0.87 1 

7 1 0.03 1 0.96 1 0.35 1 0.13 1 0.73 1 0.90 1 1.00 1 0.66 1 0.74 1 0.92 1 

8 1 0.20 1 0.42 1 0.93 1 0.63 1 0.05 1 0.22 1 0.20 1 1.00 1 0.31 1 0.50 1 

9 1 0.52 1 0.50 1 0.89 1 0.53 1 0.49 1 0.88 1 0.08 1 0.91 1 1.00 1 0.47 1 

10 1 0.19 1 0.90 1 0.85 1 0.71 1 0.18 1 0.15 1 0.24 1 0.51 1 0.97 11.00 1 

Figure 12.3 Example of three permutation-based individuals and a similarity mea
sure ro(i, j) between nodes of the data graph (Vi, j E V2) for a data graph of 10 nodes 
1V21 = 10. 

node 10 of G2 will be matched to the same node of G1 as node 9 of G2 was. 
Looking at Figure 12.4, this is 6th node of G1 . Following the same process for 
the third individual, we obtain that node 4 of G2 is matched with node 3 of 
G1 . Figure 12.5 shows the result of this first step of phase 2. 

Continuing this procedure of phase 2 until the last variable, we obtain the 
solutions shown in Figure 12.6. 

Note that each of the nodes of G2 is assigned to a variable between 1 and 
Wd = 6. Note also that every node of G1 is matched to at least one node of 
G2 , and that a value is given to every node of G2 , giving a matching value to 
each of the segments in the data image (all the segments in the data image are 
therefore recognised with a structure of the model). 
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I 1 I 2 I 3 I 4 I 5 I 6 I - I - I - I - I 

1 2 3 4 5 6 7 8 9 10 

I 4 I - I - I - I 1 I 5 I 3 I 2 I 6 I - I 

1 2 3 4 5 6 7 8 9 10 

I - I - I - I - I 6 I 5 I 4 I 3 I 2 I 1 I 

1 2 3 4 5 6 7 8 9 10 

Figure 12.4 Result of the generation of the individual after the completion of phase 
1 for the example in Figure 12.3 where six nodes of G2 have been matched (IVII = 6). 

1 2 3 4 5 6 7 8 9 10 

1 2 3 4 5 6 7 8 9 10 

I - I - I - I 3 I 6 I 5 I 4 I 3 I 2 I 1 I 

1 2 3 4 5 6 7 8 9 10 

Figure 12.5 Generation of the solutions for the example individuals in Figure 12.3 
after the first step of phase 2 (IVII = 6). 

An important aspect of this individual representation based on permutations 
is that the cardinality of the search space is n!. This cardinality is higher than 
that of the traditional individual representation. It is tested for its use with 
EDAs in graph matching for the first time here. In addition, it is important 
to note that a permutation-based approach can create redundancies in the 
solutions, as two different permutations may correspond to the same solution. 
An example of this is shown in Figure 12.7, where two individuals with different 
permutations are shown and the solution they represent is exactly the same. 
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I 1 I 2 I 3 I 4 I 5 I 6 I 2 I 3 I 3 I 3 I 

1 2 3 4 5 6 7 8 9 10 

14121 2 121 1 I 5 1 3 1 2 I 6 1 6 1 

1 2 3 4 5 6 7 8 9 10 

I 1 I 3 I 3 I 3 I 6 I 5 I 4 I 3 I 2 I 1 I 

1 2 3 4 5 6 7 8 9 10 

Figure 12.6 Result of the generation of the solutions after the completion of phase 
2. 

Individual 1: 

I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 

Individual 2: 

I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 9 I 8 I 10 I 

Solution they represent: 

I 1 I 2 I 3 I 4 I 5 I 6 I 2 I 3 I 3 I 3 I 

1 2 3 4 5 6 7 8 9 10 

Figure 12.7 Example of redundancy in the permutation-based approach. The two 
individuals represent the same solution shown at the bottom of the figure. 

3.3 Defining the similarity concept 

There are three important aspects to consider in order to define the similarity 
function w for phase 2: 

• The first is to decide which nodes have to be compared. In the example 
we propose comparing nodes from the same graph G2 , that is, the model 
graph G1 has not been taken into account. Other approaches could be 
considered for instance, taking into account the similarity of both nodes 
of G1 and nodes of G2 and assigning a weight to both values, or having a 
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fitness function capable of returning a value for individuals that are not 
complete. 

• Another additional procedure depending on the graph matching problem 
to be solved is the recalculation of the similarity measure as the individual 
is being generated: the similarity value could be changed as nodes of the 
individual are being matched, by following a clustering procedure. This 
means that in phase 2 an extra clustering procedure would be required 
in order to update the function roo 

• And finally, the other aspect to take into account is the definition of the 
similarity itself. This factor depends on the problem. This definition will 
determine to an important degree the behavior of the algorithm. 

4. Obtaining a permutation with discrete ED As 

After describing how permutations can be used in graph matching to obtain 
correct solutions, the next step is to apply EDAs to this new type of individuals 
in order to look for the permutation that symbolizes the solution with the opti
mum fitness value. At the first glance the problem seems a simple application 
of any EDAs, applying the method described in Section 3.1. 

4.1 On EDAs applied to graph matching 

We will define now more formally the graph matching problem and the way 
of facing it with an EDA approach, based on the general notation introduced 
in Chapter 3. 

We call Gl = (Vl,Et) the model graph and G2 = (V2,E2) the data graph. 
Vi is the set of nodes and Ei is the set of arcs of graph G i (i = 1,2). We still 
assume that G2 contains more segments than Gl • The graph matching task is 
accomplished by matching nodes from G2 with the nodes of the model graph 

Gl · 

We use a permutation as the representation of individuals, which means that 
the size of these individuals will be of n = 1V21 variables (that is, each individual 
can be written x = (Xl, ... , X!V21)), and each of the Xi can have 1V21 possible 
values. 

4.2 Looking for correct individuals 

The simulation of Bayesian networks has been used to reason with networks 
as an alternative to exact propagation methods. In EDAs simulation is used to 
create the individuals of the following generation based on the structure learned 
previously. 
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Among the various methods to perform the simulation process, for this chap
ter the method of choice is the Probabilistic Logic Sampling (PLS) proposed in 
Henrion (1988). 

Nevertheless as explained in Section 2.1, whatever the representation of in
dividuals selected, it is important to check that each individual is correct and 
satisfies all the restrictions to the problem so that it can be considered as a 
point in the search space. The interested reader can find a more exhaustive 
review of this topic in Bengoetxea et al. (2000a), where the authors propose 
different methods to obtain only correct individuals that satisfy the particular 
constraints of the problem. In the latter reference two methods to control the 
simulation step in EDAs are introduced: Last Time Manipulation (LTM) and 
All Time Manipulation (ATM). 

Both methods are based on the modification of the simulation step so that 
during the simulation of each individual the probabilities learned from the 
Bayesian network are modified. Each individual is generated variable by vari
able following the ancestral ordering as in PLS, but the constraints are verified 
during the instantiation and the probabilities obtained from the learning are 
modified if necessary to ensure the correctness of the individual. 

It is important to note that altering the probabilities at the simulation step, 
whichever the way, implies that the result of the algorithm is also modified 
somehow. 

For our concrete case of a permutation-based representation, and in order 
to lead ED As to the generation of correct permutations only, any of these two 
methods can be used, and both LTM and ATM will behave exactly in the 
same way: the only difference between them is that LTM only interacts in 
the simulation step when the number of values still not appeared equals the 
number of variables to be simulated in the individual, and that ATM interacts 
in the probabilities always. As in this case this situation will happen for all 
the variables of all the individuals, both methods behave in the same way, 
ensuring in both cases that every possible individual will contain always correct 
permutations. 

4.3 Choosing the best discrete EDA algorithm 

In order to test EDAs in the inexact graph matching problem defined above, 
three different ED As were tested. Typical graph matching problems can have 
large complexity, and as the difference in behavior between ED As is to a large 
extent due to the complexity of the probabilistic structure that they have to 
build, these three algorithms have been chosen as representatives of the three 
categories of EDAs introduced in Chapter 3: (1) UMDA (Muhlenbein, 1998) 
as an example of an EDA that considers no interdependencies between the 
variables; (2) MIMIC (De Bonet et al., 1997) is an example that belongs to 
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the category of pairwise dependencies; (3) EBNA (Etxeberria and Larraiiaga, 
1999) multiple interdependencies are allowed. 

5. Obtaining a permutation with continuous 
EDAs 

Continuous EDAs provide the search with other types of EDAs that can 
be more suitable for some problems. But again, the main goal is to find a 
representation of individuals and a procedure to obtain an univocal solution to 
the matching from each of the possible permutations. 

In this case we propose a strategy based on the previous section, trying to 
translate the individual in the continuous domain to a correct permutation in 
the discrete domain, proceeding next as explained in Section 3.l. 

This procedure of translating from the continuous world to the discrete world 
has to be performed for each individual in order to be evaluated. Again, this 
process has to be fast enough in order to reduce computation time. 

With all these aspects in mind, individuals of size n = JV21 will be defined. 
Each individual is obtained sampling from a n-dimensional Gaussian distribu
tion, and therefore can take any value in IRn. With this new representation 
the individuals do not have a direct meaning of the solution it represents: the 
values for each of the variables do only show the way to translate from the 
continuous world to a permutation as with the discrete representation shown 
in Section 2.1, and it does not contain similarity values between nodes of any 
graph. This new type of representation can also be regarded as a way of change 
the search from the discrete to the continuous world, where the techniques that 
can be applied to the estimation of densities are completely different. 

To obtain a translation to a discrete permutation, we order the continuous 
values of the individual, and set its corresponding discrete values by assigning 
to each Xi E {1, ... , JV21} the respective order. The procedure described in this 
section is shown as pseudocode in Figure 12.8. 

For the simulation of an univariate normal distribution, a simple method 
based on the sum of 12 uniform variables (Box and Muller, 1958) is chosen. 
On the other hand, the sampling of multivariate normal distributions has been 
done by means of an adaptation of the conditioning method (Ripley, 1987) on 
the basis of the PLS algorithm. Note that in this continuous case it is not 
required to check whether all the values are different or not. 

Again, for the continuous domain different EDAs are proposed and these 
are to be tested in this chapter for their performance in a concrete inexact 
graph matching problem. Three different algorithms are chosen again, as rep
resentatives of their complexity category. These are the UMDAc , MIMICc , and 
EGNA (Larraiiaga et al., 2000). 
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From a continuous value in IR n to a discrete permutation 

Definitions 
n = 1V21: size of the individual, which is the number of 

nodes in data graph G2 (the permutation) 
xC = (xf, ... , x~21): individual containing continuous 

values (the input) 
x D = (xP, ... , xft21): individual containing a permutation 

of discrete values (the output) 
xf E {I, ... , n}: value of the ith variable in the individual 

Procedure 
Order the values xf, ... ,x~21 of individual xC using any 

fast sorting algorithm such as Quicksort 
Let Ki be position in which each value xf, 1 ~ i ~ 1V21, occupies 

after ordering all the values 
The values of the individual x D will be set in the following way: 

Vi = 1, ... , 1V21, xf = Ki 

Figure 12.8 Pseudocode to translate from a continuous value in lEe to a discrete 
permutation composed of discrete values. 

6. Experimental results. The human brain 
example 

6.1 Overview of the human brain example 

The example chosen to test the new permutation-based representation is 
an inexact graph matching one used for recognition of structures in Magnetic 
Resonance Images (MRI). The data graph G2 is generated from this image and 
contains a node for each region (subset of a brain structure). The model graph 
G1 is built from an anatomical atlas and each node corresponds exactly to one 
brain structure. The experiments carried out in this chapter are focused on 
this type of graphs, but could similarly be adapted to any other inexact graph 
matching problem. 

More specifically, the model graph has been obtained from the main struc
tures of the brainstem, the inner part of the brain, and it does not take into 
account the cerebral hemispheres. This reduced example is a shorter version 
of the brain images recognition problem in Perchant and Bloch (1999). The 
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fact that less structures have to be recognized (from 43 to 12) reduces the com
plexity of the problem. In the same way, the human brain images have also 
been reduced, and the number of structures of the data image to be matched 
(number of nodes of G2 ) is also reduced from 245 to 94. The number of arcs is 
also different in this problem: while in Perchant and Bloch (1999) G1 and G2 

contained 417 and 1451 arcs , in these examples the number of arcs is of 84 and 
2868 respectively. 

Speaking about the similarity concept, for our experiments we have used 
only a similarity measure based on the grey level distribution, so that when the 
function w returns a higher value for two nodes it shows a more similar grey 
level distribution over the two segments of the data image. Another possible 
property could have been the distance between the segments in the data image 
for instance. In addition, no extra computation is performed during the gener
ation of the individual (not clustering process is performed), and therefore the 
similarity measure tv is kept as a constant during the generation of individuals. 
These decisions have been taken knowing the nature and properties of the data 
graph, which is a human brain NMR image in black and white. These decisions 
were also considered as a way to simplify the complexity of the problem. 

6.2 Description of the experiment 

The aim of these experiments is to test the performance of some discrete 
and continuous EDAs introduced in Chapter 3 in this volume for the same 
example. As the main difference between them is the number of dependencies 
between variables that they take into account, the more complex algorithms 
are expected to require more CPU time but also to reach a fitter final solution. 
This section describes the experiments and the results obtained. EDAs are also 
compared to a broadly known GA, the GENITOR (Whitley and Kauth, 1988), 
which is a steady state type algorithm (ssG A) (Michalewicz, 1992). 

Both EDAs and GENITOR were implemented in ANSI C++ language, and 
the experiment was executed in a two processor Ultra 80 Sun computer under 
Solaris version 7 with 1 Gb of RAM. 

In the discrete case, all the algorithms were designed to end the search 
when a maximum of 100 generations or when uniformity in the population was 
reached. GENITOR is a special case, as it is a ssGA and therefore generates 
only one individual at each iteration, but it was also programmed in order to 
generate the same number of individuals as in discrete ED As by allowing more 
iterations (201900 individuals). In the continuous case, the ending criterion 
was to reach 301850 evaluations (i.e. number of individuals generated). 

The initial population for all the algorithms was generated using the same 
random generation procedure based on a uniform distribution. The fitness 
function used is described later in Section 6.3. 
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In EDAs, the following parameters were used: a population of 2000 individ
uals (M = 2000), from which a subset of the best 1000 are selected (N = 1000) 
to estimate the probability, and the elitist approach was chosen (that is, always 
the best individual is included for the next population and 1999 individuals 
are simulated). In GENITOR a population of 2000 individuals was also set, 
with a mutation rate of Pm = ~ and a crossover probability of Pc = 1. The 
operators used in GENITOR where ex (Oliver et al., 1987) and EM (Banzhaf, 
1990). 

6.3 Definition of the fitness function 

The definition of the fitness function for the graph matching problem will 
be a very important factor in the resolution of the problem as well, as its 
behavior will also determine how the optimization algorithm approaches the 
best solution. It is important to define appropriately the function that will 
be used in order to compare individuals and obtain the best solution. The 
aim of this chapter is not to do a review of the different fitness functions for 
graph matching. This is the reason why the function proposed in Perchant and 
Bloch (1999) will be used just as an example of a fitness function in inexact 
graph matching. This function has been used to solve the problem applied 
to human brain images with GAs in Perchant et al. (1999) and Hoeres et 
al. (1999) and with ED As in Bengoetxea et al. (2000a) and Bengoetxea et 
al. (2000b). Following this function, an individual x= (xl"",xIV21) will be 
evaluated as follows: 

[
1 1V21IVlI i 'J 

J(x; P", PI" a) = a 1V211V11 8 ~ (1 -ICij - p~l (u~)I) + 

(I-a) [IE2~Ed ,_ ~, k ~, ( 1 - !cijCi1jl - p~i (e~)I)l (12.3) 
el-(ul,v l )EEl e2=(u2,v2 )EE2 

where 

{ I if Xi = j 
Cij = 0 otherwise 

and a is a parameter used to adapt the weight of node and arc correspondences 
in J, and p" = {p~l : V2 -+ [0 , 1], Ul E VI} is the set of functions that measure 
the correspondence between the nodes of both graphs G1 and G2 . Similarly, 
PI' = {p~Ul'Vl): E2 -+ [0, 1], (ul,vd E Ed is the set of functions that measure 
the correspondence between the arcs of both graphs G1 and G2 . The value of J 
associated for each variable returns the goodness of the matching. Typically Pa 
and PI' are related to the similarities between node properties and arc properties 
respecti vely. 

Function J(x; Pa, P,£> a) has to be maximized. 
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Table 12.1 Mean values of experimental results after 10 executions for each algorithm 
of the inexact graph matching problem of the Human Brain example. 

Best fitness value Execution time Number of evaluations 

UMDA 0.718623 00:53:29 85958 
UMDAc 0.745036 03:01:05 301850 
MIMIC 0.702707 00:57:30 83179 
MIMICc 0.747970 03:01:07 301850 
EBNA 0.716723 01:50:39 85958 
EGNA 0.746893 04:13:39 301850 
ssG A 0.693575 07:31:26 201900 

p < 0.001 p < 0.001 p < 0.001 

6.4 Experimental results 

Results such as the best individual obtained, the computation time, and the 
number of evaluations to reach the final solution were recorded for each of the 
experiments. 

The computation time is the CPU time of the process for each execution, 
and therefore it is not dependent on the multiprogramming level at the moment 
of the execution. This computation time is presented as a measure to illustrate 
the different computation complexity of all the algorithms. It is important 
also to note that all the operations for the estimation of the distribution, the 
simulation, and the evaluation of the new individuals are carried out through 
memory operations. 

Each algorithm was executed 10 times, and the null hypothesis of the same 
distribution densities was tested for each of them. The non-parametric tests 
of Kruskal-Wallis and Mann-Whitney were used. This task was carried out 
with the statistical package S.P.S.S. release 9.00 and the results are shown in 
Table 12.1. 

This table shows the mean results for each of the experiments, showing the 
different parameters (best fitness value obtained, execution time and number of 
generations required respectively). Additionally, the same Kruskal-Wallis and 
Mann-Whitney tests were also applied to test the differences between particular 
algorithms. The results were as follows: 

• Between algorithms of similar complexity only: 

UMDA vs. UMDAc. Fitness value: p < 0.001; CPU time: p < 0.001; 
Evaluations: p < 0.001. 
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- MIMIC vs. MIMICc . Fitness value: p < 0.001; CPU time: p < 0.001; 
Evaluations: p < 0.001. 

- EBNA vs. EGNA. Fitness value: p < 0.001; CPU time: p < 0.001; 
Evaluations: p < 0.001. 

From the results we can conclude that the differences between the al
gorithms in the discrete and continuous domains are significant for all 
the algorithms analyzed. This means that the behaviour of selecting a 
discrete learning algorithm or its equivalent in the continuous domain is 
very different regarding all the parameters analyzed. It is important to 
note that the number of evaluations was expected to be different, as the 
ending criteria for the discrete and continuous domains have been set to 
be different. In all the cases, the continuous algorithms obtained a fitter 
individual, but the CPU time and number of individuals created was also 
bigger. 

• Between discrete ED As only: 

Fitness value: p < 0.001. 

CPU time: p < 0.001. 

Evaluations: p < 0.001. 

In this case significant results are also obtained in fitness value and CPU 
times, as well as in the number of evaluations. The discrete algorithm 
that obtained the best result was UMDA, closely followed by EBNA. The 
differences in the CPU time are also according to the complexity of the 
learning algorithm we used. Finally, the different number of evaluations 
means that MIMIC required significantly less individuals to converge (to 
reach the uniformity in the population), whereas the other two EDAs 
require quite the same number of evaluations to converge. 

The genetic algorithm GENITOR is far behind the performance of EDAs. 
The computation time is also a factor to be taken into account: the fact 
that GENITOR requires about 7 hours for each execution can give an 
idea of the complexity of the problem that these algorithms are dealing 
with. 

• Between continuous EDAs only: 

Fitness value: p = 0.342. 

CPU time: p < 0.001. 

Evaluations: p = 1.000. 

In the case of the continuous algorithms, the differences in fitness value 
between the different learning methods are not significant in the light of 
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the results. Nevertheless, the CPU time required for each of them is also 
according to the complexity of the learning algorithm. On the other hand, 
as the ending criterion for all the continuous algorithms was to reach the 
same number of evaluations, it was obvious that there were not differences 
between them in the number of evaluations. Speaking about the differ
ences in computation time between discrete and continuous EDAs, it is 
important to note that the latter ones require all the 301850 individuals 
to be generated before they finish the search. Furthermore, the compu
tation time for the continuous algorithms is also longer than the discrete 
equivalents as a result of several factors: firstly, due to the higher num
ber of evaluations they perform each execution, secondly because of the 
longer individual-to-solution translation procedure that has to be done 
for each of the individuals generated, and lastly, as a result of the longer 
time required to learn the model in continuous spaces. 

In the light of the results obtained in the fitness values, we can conclude 
the following: generally speaking, continuous algorithms perform better than 
discrete ones, either when comparing all of them in general or when only with 
algorithms of equivalent complexity. 

7. Conclusions and further work 
This chapter introduces a new individual representation approach for EDAs 

applied to the inexact graph matching problem. This new individual represen
tation can be applied in both discrete and continuous domains. 

In experiments carried out with a real example, a comparison of the per
formance of this new approach between the discrete and continuous domains 
has been done, and continuous EDAs have shown a better performance look
ing at the fittest individual obtained, however a longer execution time and 
more evaluations were required. Additionally, other fitness functions should be 
tested with this new approach. Techniques such as Bloch (1999a) and Bloch 
(1999b) could also help to introduce better similarity measures and therefore 
improve the results obtained considerably. 
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